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Types of Data
images,videos,speech waves, gene expression,financial
data
internet, biological/social networks
documents and information flows

Problems
How to capture variations of data distribution?
How to distinguish significant features from noise?
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Algebra and Topology may play a role

Convert the data set into global topological
objects
Infer high dimensional structure from low
dimensional representations
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Networks or Point Cloud as undirected graphs

Point cloud as vertices of a graph
Connectivity data as edges

The graph ignores higher order features beyond clustering.
Think of the graph as a scaffold: complete it to a simplicial
complex

4/27



From clouds to complexes
Homology

Persistent Homology

Simplicial Complexes
K , a set
S, a collection of subsets (simplices) in K

such that
for all v ∈ K , {v} ∈ S
for all σ ∈ S and τ ⊂ σ, then τ ∈ S

the sets {v} are the vertices of K .
σ ∈ S is a k − simplex if |σ| = k + 1.
a subset τ ⊂ σ is a face of σ

A simplicial complex is called oriented if it comes with a total
order on its vertices. We denote the simplices σ = [v0, ..., vn].
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Standard simplices in R3

A simplex may be realized geometrically as the convex hull of
k + 1 affinely independent points in Rd with d ≥ k .

Example
If K is a tethraedron, triangle faces are the 2−simplices, edges
are the 1−simplices, vertices are the 0−simplices.
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Figure: Simplicial complex

Figure: Invalid simplicial complex
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From clouds to complexes

Figure: Tang Yau Hoon
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Clique Complexes

A clique is a subset of vertices such that every two vertices are
connected by an edge. The clique complex associated to a
graph G has the vertices of G and the faces are the cliques of
G.

Figure: Wikipedia
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Some Algebraic Topology

The k−th chain Group Ck (K )

A k-chain is a linear combination of k−simplices in K with
integer coefficients. The k−th chain group is the set of all linear
combinations

Ck (K ) :=
∑

i

niσi , ni ∈ Z, σi k − simplex in K

The boundary operator ∂k : Ck (K ) → Ck−1(K )

The boundary operator is a homomorphism defined on a
k−simplex by:

∂k ([v0, ..., vk+1]) =
∑

i

(−1)i [v0, ..., v̂i , ..., vk+1]

and on a k−chain by linearity.
10/27



From clouds to complexes
Homology

Persistent Homology

Figure: Hatcher’s book
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The boundary of a boundary is zero

The operator ∂ connects chain groups

... −→ Ck+1(K )
∂k+1−→ Ck (K )

∂k−→ Ck−1(K ) → ...

It has the important property that

∂k ◦ ∂k+1 = 0

Cycles and Boundaries in Ck (K )

A cycle is a chain with zero boundary.
Zk (K ) := ker ∂k the k−th cycle group
Bk (K ) := im ∂k+1 the k−th boundary group
∂ ◦ ∂ = 0 =⇒ Bk ⊆ Zk

12/27



From clouds to complexes
Homology

Persistent Homology

These groups are nested

 

Figure: G. Carlsson - A. Zomorodian "Computing Persistent
Homology"
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Boundaries of higher order chains are uninteresting

∂(∂[a, b, c]) = ∂([b, c]−[a, c]+[a, b]) = c−b−(c−a)+b−a = 0
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Use Homology to identify interesting cycles

The k−th homology group is the quotient group of cycles over
boundaries

Hk (K ) := Zk (K )/Bk (K )

A element α ∈ Hk (K ) is a homology class.

Betti numbers
βk the k−th Betti number : rank of Hk (K )
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Holes = Interesting cycles

Homology can identify
clusters (β0 is the number of connected components)
holes (1st order holes),
voids or cavities (2nd order holes, the inside of a balloon)
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Figure: Wikipedia

a, b, c, d : 0−simplices; E , F , G, H, I : 1−simplices; shaded
region: 2−simplex. β0 = 1. One hole: β1 = 1. No voids: β2 = 0. 17/27
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How can homology track the evolution of a data set?

Figure: D.Horak "Persistence Homology of Complex Networks"

18/27



From clouds to complexes
Homology

Persistent Homology

Adding or removing simplices

Filtrations
A filtration of a complex K is a nested sequence of
subcomplexes

∅ = K 0 ⊆ K 1 ⊆ K 2 ⊆ K 3 ⊆ ... ⊆ K m = K

Birth and death of a homology class

The filtration induces maps on the homology groups

... → Hk (K i−1) → Hk (K i) → Hk (K i+1) → ...

If a class α is born in Hk (K i) and dies in Hk (K j), the
persistence (lifetime) of α is l = j − i − 1
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Persistent homology

The p−persistent k−th homology group of K i is

H i,p
k := Z i

k/(Bi+p
k ∩ Z i

k )

Homology classes of K i that are still alive in K i+p

Persistent Betti numbers

β i,p
k the p−persistent k−th Betti number : rank of H i,p

k

Independent homology classes in K i that are still alive and
independent in K i+p

Persistent homology tracks homology classes along the
filtration: for which value of p a hole appears, and how long it
persists till it is filled in.
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Visualize persistent homology: barcodes

Figure: R.Ghrist "The Persistent Topology of Data"
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The horizontal axis is p
The vertical axis represents ordered homology generators
for the Hk

Each horizontal bar represents the birth death of a
separate homology class

Longer bars correspond to more robust topological
structure in the data.
Shorter bars have short lifetimes and may be considered
as topological noise.
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Applications

Separate topological signal from topological noise
Give important information about robustness of networks
against addition or removal of nodes
Exhibit the highest topological resilience to change in the
addition or removal of nodes
Try to detect hierarchies in a (social, infrastructural,
biological) network
Process motion capture data to distinguish significant
features
....
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Other Approaches

Complexes associate to graphs : Cech complex, Rips
complex,
Persistence Complexes : maps f i : K i → K i+i instead of
inclusions K i ⊂ K i+1

Random networks
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Computational aspects

JavaPlex, Java library for persistent homology (CompTop,
Stanford) http://code.google.com/p/javaplex

25/27



From clouds to complexes
Homology

Persistent Homology

Short Bibliography

G.Carlsson, A.Zomorodian "Computing Persistence
Homology" , Discrete Comput. Geom. (2005)
H. Edelsbrunner, J. Harer "Persistent Homology. A
Survey", Contemporary Mathematics (2008)
F. Cagliari, M. Ferri, P.Pozzi "Size functions from the
categorical viewpoint", Acta Appl. Math. (2001).
P. Frosini, C. Landi "Size theory as a topological tool for
computer vision", Pattern Recognition and Image Analysis
(1999)
R. Ghrist "Barcodes: The persistent topology of data". B.
AM. Math. Soc. (2008)

26/27



From clouds to complexes
Homology

Persistent Homology

THANK YOU!
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