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From clouds to complexes

Types of Data

@ images,videos,speech waves, gene expression,financial
data

@ internet, biological/social networks
@ documents and information flows
Problems

@ How to capture variations of data distribution?
@ How to distinguish significant features from noise?
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From clouds to complexes

may play a role

e Convert the data set into global topological
objects

e Infer high dimensional structure from low
dimensional representations
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From clouds to complexes

Networks or Point Cloud as undirected graphs

@ Point cloud as vertices of a graph
@ Connectivity data as edges
The graph ignores higher order features beyond clustering.

Think of the graph as a scaffold: complete it to a simplicial
complex
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From clouds to complexes

Simplicial Complexes

@ K, aset

@ S, a collection of subsets (simplices) in K
such that

o forallve K,{v}eS

@ forallc e Sand 7 C o, thenT € S

@ the sets {v} are the vertices of K.
@ cecSisak—simplexif|o| =k +1.
@ asubsetT C ois a faceof o

A simplicial complex is called oriented if it comes with a total
order on its vertices. We denote the simplices o = [v, ..., Vy].
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From clouds to complexes

Standard simplices in R®
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A simplex may be realized geometrically as the convex hull of
k + 1 affinely independent points in RY with d > k.

If K is a tethraedron, triangle faces are the 2—simplices, edges
are the 1—simplices, vertices are the 0—simplices.
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From clouds to complexes
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Figure: Simplicial complex
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Figure: Invalid simplicial complex
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From clouds to complexes

From clouds to complexes

Figure: Tang Yau Hoon
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From clouds to complexes

Cliqgue Complexes

A cligue is a subset of vertices such that every two vertices are
connected by an edge. The clique complex associated to a
graph G has the vertices of G and the faces are the cliques of
G.

Figure: Wikipedia
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Homology

Some Algebraic Topology

The k—th chain Group Ci(K)

A k-chain is a linear combination of k—simplices in K with
integer coefficients. The k—th chain group is the set of all linear
combinations

Ck(K):=> nioj, nj€Z, ojk — simplex inK

I

The boundary operator 9k : Cx(K) — Ck_1(K)

The boundary operator is a homomorphism defined on a
k—simplex by:

O([V0s s Viest]) = D (= 1) [Voy wvvs Vi vovs V1]

i

and on a k—chain by linearity.
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Homology

0

v

a[UO! U|] = ['Ul] - [U()]

olvg, vy, Vo] = [V, 5] = [vg, Vo] + [vg, V4]

o[vy, vy, vy, v3] = [V, V5, V3] = [V, Vo, V3]

+ [vg, vy, v3] = [vg, vy, V5]

Figure: Hatcher’'s book
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Homology

The boundary of a boundary is zero

The operator 0 connects chain groups

16)
. — Crat (K) 22 C(K) 25 G (K) — ...

It has the important property that

8[( 08k+1 = O

Cycles and Boundaries in Cx(K)

A cycle is a chain with zero boundary.
@ Z(K) := ker 9, the k—th cycle group
@ By(K) := im k.1 the k—th boundary group
@ 0o0d=0— By C Z
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Homology

These groups are nested

Figure 4. A chain complex with its internals: chain, cycle, and
boundary groups, and their images under the boundary opera-
tors.
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Homology

Boundaries of higher order chains are uninteresting

E"x
/ : 2 ?
A

] b a b

d(0[a, b, c]) = d([b, c]—[a, c]+[a, b]) = c—b—(c—a)+b—a=0
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Homology

Use Homology to identify interesting cycles

The k—th homology group is the quotient group of cycles over
boundaries

Hk(K) = Zk(K)/Bk(K)

A element o € H(K) is a homology class.

Betti numbers
@ [k the k—th Betti number : rank of Hy(K)
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Homology

Holes = Interesting cycles

Homology can identify
@ clusters (5 is the number of connected components)
@ holes (1st order holes),
@ voids or cavities (2nd order holes, the inside of a balloon)
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Homology

Figure: Wikipedia

a,b,c,d: 0—simplices; E, F, G, H, I : 1—simplices; shaded
reqgion: ?2—<imblex A4~ — 1 One hole: 3 —= 1 No voids: 3 =0 1757



Persistent Homology

How can homology track the evolution of a data set?

-
.
. - ./0 ./.
K. K, K K, K
B=0 p=1 p=2 B=1 p=2
p.=0 p.=0 B=0 =0 B=0
B:=0 B.=0 B=0 B.=0 B=0
K, K. K. K, K
po=1 p=1 B.=2 B=1 po=1
B=0 B=1 B.=1 B=1 B.=0
p=0 B:=0 B.=0 | p=0 | B.=0
K K, K K, K.
po=1 p=1 p=1 Be=1 p=1
B=1 B=2 B=1 B.=0 B=0
| B.=0 B.=0 B=0 B:=0 B=1

Figure: D.Horak "Persistence Homology of Complex Networks"
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Persistent Homology

Adding or removing simplices

A filtration of a complex K is a nested sequence of
subcomplexes

P=K'CK'CcK’CK}C..CK"=K

Birth and death of a homology class
The filtration induces maps on the homology groups

. = H(K'™") = Hi(K") — He(K™1) — ...

If a class « is born in Hx(K') and dies in Hx(K7), the
persistence (lifetime) of ais I =j — i — 1
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Persistent Homology

Persistent homology
The p—persistent k—th homology group of K’ is

HP = 2,/(BP n Z))

Homology classes of K' that are still alive in K'*+P

Persistent Betti numbers
o (3P the p—persistent k—th Betti number : rank of Hj”

Independent homology classes in K "'that are still alive and
independent in K'+P

Persistent homology tracks homology classes along the
filtration: for which value of p a hole appears, and how long it
persists till it is filled in.
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Persistent Homology

~ Visualize persistent homology: barcodes

Figure: R.Ghrist "The Persistent Topology of Data"




Persistent Homology

@ The horizontal axis is p

@ The vertical axis represents ordered homology generators
for the H

@ Each horizontal bar represents the birth death of a
separate homology class

@ Longer bars correspond to more robust topological
structure in the data.

@ Shorter bars have short lifetimes and may be considered
as topological noise.
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Persistent Homology

Applications

@ Separate topological signal from topological noise

@ Give important information about robustness of networks
against addition or removal of nodes

@ Exhibit the highest topological resilience to change in the
addition or removal of nodes

@ Try to detect hierarchies in a (social, infrastructural,
biological) network

@ Process motion capture data to distinguish significant
features
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Persistent Homology

Other Approaches

@ Complexes associate to graphs : Cech complex, Rips
complex,

@ Persistence Complexes : maps f' : K' — Kt/ instead of
inclusions K' ¢ K'+1

@ Random networks
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Persistent Homology

Computational aspects

JavaPlex, Java library for persistent homology (CompTop,
Stanford) http://code.google.com/p/javaplex
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Persistent Homology
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